Features

The spy behind the plane that saved Britain

plane1

By Clive Irvine

In the early spring of 1936, people taking a stroll in the quiet, bucolic lanes of Hampshire, in southern England, would occasionally hear the roar of a powerful airplane overhead and—if lucky—would catch a glimpse of a startling new shape in the sky, a fighter with wings shaped like a broad and sharp knife blade.

The fighter was one of Britain’s most closely guarded secrets at the time. Its role would be more consequential to the future of Britain than any war machine before it—in fact, it was to be decisive in 1940, in the Battle of Britain, a victory that not only saved the country from invasion from Nazi Germany but, in its lasting effects, kept freedom alive in western Europe.

At that time, 80 years ago this month, when the lone prototype of the fighter was making its first test flights, it had no name, just a number, K5054. But a month or so later the Air Ministry agreed to the suggestion that it should be called the Spitfire. Hearing this, the chief designer of the airplane, R. J. Mitchell, said, “It’s the sort of bloody silly name they would give it.”

In fact, the name became famous way beyond the machine itself. It seemed to embody a national spirit of resistance and survival, as potent as the morale-raising speeches of Winston Churchill. In this process Mitchell was also swept into the propaganda, at the center of an enduring creation myth. Indeed, there was a tragic as well as triumphant narrative to tell: little more than a year after the Spitfire’s first flight Mitchell died of cancer.

The myth was made official in 1942 with a shamelessly jingoistic movie, First of the Few, starring Leslie Howard as Mitchell. We see Mitchell weakened by cancer as the Spitfire is created. But in a purely fictional touch we also see him watching seagulls soaring and gaining inspiration from their agility for a sui generis wing design, the elliptical shape of the Spitfire’s wings.

Those wings were more than an aesthetic flourish. They incorporated qualities that made the Spitfire outstanding in the one-on-one dogfights that were decisive in the summer of 1940, when the young pilots of the Royal Air Force narrowly defeated Germany’s Luftwaffe.

But what could never be revealed in the exultant Spitfire promotions (there were, for example, “Spitfire Dances” all over the country to raise morale and donations for the Royal Air Force) was that the science of the Spitfire’s wing owed a great deal to German scientists—and to a program of industrial espionage that Britain had quietly conducted long before the clouds of war gathered.

In truth, it was then often difficult to distinguish between what would now be regarded as deliberate industrial espionage and the free and open exchange of scientific discoveries between the advanced industrial powers. And in aviation, German aeronautical science had been accepted as superior from the late days of World War I.

The British acknowledged this. And in the late 1920s the Air Ministry recognized the talents of a young Canadian, Beverley Shenstone, who had been recruited by the ministry’s research laboratory in London, and they gave him a secret mission.

In 1929 Shenstone left London and went to work at the Junkers airplane company in Dessau, Germany as a junior aerodynamicist. The Nazis were four years from taking power. The Versailles Treaty limited to Germany to non-military aviation, but, as Shenstone discovered in Dessau, the Germans were still able to develop highly advanced commercial airplanes that would easily morph into bombers and fighters.

The Germans saw nothing sinister in Shenstone’s acuity and keen curiosity to understand their secrets. And the Germans themselves were openly developing a radical idea that had originated in America, the all-metal airplane. (The U.S. military was far slower to adopt this innovation than were the commercial airplane firms.) Shenstone soon discovered that among German aerodynamicists one name kept cropping up as a genius: Alexander Martin Lippisch.

Lippisch was a wing specialist. Indeed, his designs were very little more than wings, anticipating the delta-shaped all-wing form used today by America’s most potent weapon, the B2 stealth bomber. Lippisch had a prototype “flying wing” in the air as early as 1931.

©thedailybeast.com